
Neural Networks

● Biological Inspiration for Neural Networks

● Learn from complicated inputs→transform data into lower dimension→Multi-layer
networks = “deep learning”(comes from # of hidden layers)

● History of Neural Networks
○ Perception can be interpreted as a simple neural network
○ Misconceptions about the weaknesses of perceptrons contributed to declining

funding for NN research
○ Difficulty of training multi-layer NNs contributed to second setback
○ Mid 200’s: breakthroughs inNN training contribute to rise of “deep learning”



● Activation Functions
○ Sigmoid function

■ Input; all real numbers, output:[0, 1]

Pros and Cons:
● - (-) When input becomes very positive or very negative, gradient approaches 0

(saturates and stops gradient descent)
● - (-) Not zero-centered, so gradient on weights can end up all positive or all

negative (zig-zag in gradient descent)
● - (+) Derivative is easy to compute given function value!



● Hyperbolic tangent
○ Input: all real numbers, output: [-1, 1]

Pros and Cons:
● - (-) Still has a tendency to prematurely kill the gradient
● - (+) Zero-centered so we get a range of gradients
● - (+) Rescaling of sigmoid function so derivative is also not too difficult

● Rectified Linear Unit(ReLU)
○ Return x if x is positive (i.e. threshold at 0)

Pros and Cons:
● - (+) Works well in practice (accelerates convergence)
● - (+) Function values are very easy to compute! (no exponentials)
● - (-) Units can have no signal if input becomes too negative throughout gradient

descent



Takeaways:

● As the number of parameters grows, anon-convex function often has more and more local
minima

● Starting at a “good” point is crucial
● Unsupervised pre-training uses latent structure in the data as a starting point for weight

initialization
● After this process, the network is “fine-tuned”
● In practice this has been found to increase accuracy on specific tasks (which could be

specifies after feature learning)

Weight initialization

● Initialize the pre-training
● All 0’s initialization is bad! Causes nodes to compute the same outputs, so then the

weights go through the same updates during gradient descent
● Need asymmetry! => usually use small random values

Mini-Batches

● SGD’s flipside is BGD(beach gradient descent) where we compute the gradient with
respect to all the data, and then update the weights

● A middle ground uses mini-batches of examples before updating the weights

Scores and softmax

● Output of final fully connected layer is a vector of length K(# of classes)
● Raw scores are transformed into probabilities using the softmax function: (let S be the

score for class k)

● Apply cross-entropy loss to these probabilities



Motivation for moving away from FC architectures

● For a 32x32x3 image (very small!) we have p = 3072 features in the input layer
● For a 200x200x3 image, we would have p = 120,000! doesn’t scale
● Fully connected networks do not explicitly account for the structure of an image and the

correlations/relationships between nearby pixels

Idea: 3D volumes of neurons

● Do not “flatten” image, keep it as a volume with width, height, and depth
● For **CIFAR-10**, we would have:

○ Width=32, Height=32, Depth=3
● Each layer is also a 3 dimensional volume
● The output layer is 1x1xC, where C is the number of classes (10 for CIFAR-10)
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