Neural Networks

e Biological Inspiration for Neural Networks

o wo
synapse
wWoT0

axon from a neuron

impulses carried
toward cell body

cell body

Zw,w,- +b

branches

dendrites \(Y/ of axon
\\ /gf w axon
nucleus = . 2 terminals
- e
?’TJ% { impulses carried

away from cell body
cell body

f (Z wiz; + b)

output axon

activation
function

e Learn from complicated inputs—transform data into lower dimension—Multi-layer
networks = “deep learning”(comes from # of hidden layers)
e History of Neural Networks
o Perception can be interpreted as a simple neural network
o Misconceptions about the weaknesses of perceptrons contributed to declining
funding for NN research
Difficulty of training multi-layer NNs contributed to second setback
Mid 200°’s: breakthroughs inNN training contribute to rise of “deep learning”

onhe training example
g p W(l)

aw ' h? + wPhP + b))

“fake” one

. H(l) = a(W(l)X_I_ 5(1)) p; = # of nodes in layer 1
— 1 1

activation function p; Xp pxn p; X1

—
P11 Xn

e H@ = ¢ (W(z) HD 4+ g(z))

« § = a(w(3)H(2) + b(3))

e Activation Functions
o Sigmoid function
m Input; all real numbers, output:[0, 1]

10

Pros and Cons:
e - (-) When input becomes very positive or very negative, gradient approaches 0
(saturates and stops gradient descent)
® - (-) Not zero-centered, so gradient on weights can end up all positive or all
negative (zig-zag in gradient descent)
e - (+) Derivative is easy to compute given function value!

e Hyperbolic tangent
o Input: all real numbers, output: [-1, 1]

et —e "
tanh(:c) - eI + 6—1: —;0‘ — I—.5 5 - .110

= =1.0F

Pros and Cons:
e - (-) Still has a tendency to prematurely kill the gradient
® - (+) Zero-centered so we get a range of gradients
e - (+) Rescaling of sigmoid function so derivative is also not too difficult

® Rectified Linear Unit(ReLU)
o Return x if x is positive (i.e. threshold at 0)

f(x) = max(0, x)

Pros and Cons:
e - (+) Works well in practice (accelerates convergence)
e - (+) Function values are very easy to compute! (no exponentials)
® - (-) Units can have no signal if input becomes too negative throughout gradient
descent

Takeaways:

e As the number of parameters grows, anon-convex function often has more and more local
minima
Starting at a “good” point is crucial
Unsupervised pre-training uses latent structure in the data as a starting point for weight
initialization
After this process, the network is “fine-tuned”
In practice this has been found to increase accuracy on specific tasks (which could be
specifies after feature learning)

Weight initialization

Initialize the pre-training
All 0’s initialization is bad! Causes nodes to compute the same outputs, so then the
weights go through the same updates during gradient descent

e Need asymmetry! => usually use small random values

Mini-Batches

e SGD’s flipside is BGD(beach gradient descent) where we compute the gradient with
respect to all the data, and then update the weights
e A middle ground uses mini-batches of examples before updating the weights

Scores and softmax

e OQutput of final fully connected layer is a vector of length K(# of classes)
e Raw scores are transformed into probabilities using the softmax function: (let S be the
score for class k)

ek
Ye = =K

Zj:l €™

e Apply cross-entropy loss to these probabilities

Motivation for moving away from FC architectures

e Fora 32x32x3 image (very small!) we have p = 3072 features in the input layer

e For a200x200x3 image, we would have p = 120,000!

e Fully connected networks do not explicitly account for the structure of an image and the
correlations/relationships between nearby pixels

Idea: 3D volumes of neurons

Do not “flatten” image, keep it as a volume with width, height, and depth
For **CIFAR-10**, we would have:
o Width=32, Height=32, Depth=3
Each layer is also a 3 dimensional volume
The output layer is 1x1xC, where C is the number of classes (10 for CIFAR-10)

32
- 32 - ar G E
¢ 3C ¢ ¢ g .
) QOOO0H

w{]

